

PURPOSE STATEMENT

As Vattenfall we exist to:

CLIMATE SMARTER

LIVING

... 100% free from using fossil fuel throughout the entire value chain of energy production in one generation

... using the word "smart<u>er</u>" indicates continuous improvements

... for everyone; a way of working, a way of living today and for the future

Towards a CO₂-free energy system in the netherlands

Key challenges:

- Fast CO₂-emission reduction required in all sectors
 - Power sector: 50-75% reduction in 2030; carbon free before 2050
- Integration of strongly increasing amounts of wind and solar in the energy system
 - Requirement for flexible capacity
 - Requirement for large-scale energy storage
- Availability of CO₂-free energy in NW-Europe

Transition to a hydrogen based economy is a possible solution

GAS PLANTS WILL OPERATE IN THE FAR MAJORITY OF HOURS, EVEN WITH HIGH AMOUNTS OF RES INSTALLED

- Even with high amounts of RES in the system, in the far majority of hours a residual load remains
 - As coal will be phased out after 2030, it will be mostly gas plants that will serve this load
- The resulting CO₂ emission for the electricity sector is ca. 20 Mton/yr in 2030
 - This is a 55% reduction (Ref: 1990), and the lower limit of required emission reduction for the power sector
- In order to meet deeper emission reductions, emissions of gas plants must be reduced:
 - Post-combustion CCS is disqualified as an option due to high costs at reduced amount of FLH and continued dependence on fossil fuels
 - o H₂-firing is a solution, offering important synergies in the energy system

LCOE ANALYSIS BASED ON TODAY'S MARKET PRICES

Dispatchable CO₂ free technologies

OUR VISION: MAGNUM AS A SUPERBATTERY

- 3x MHPS 701F4 gas turbine combined cycles (CCGT)
- Output 3x437 MW_e, (2 million households)
- State of the art, year of commissioning 2013
- Flexible (daily start/stop) and high efficient
- Good logistic options (seaways)
- Excellent grid connection (2x1400 MW_e, 380 kV)
- Engineered for coal gasification (declined) and so:
 - Multi fuel turbines
 - 45 ha plant area, 40% occupied
 - Oversized DeNO_x

BLUE HYDROGEN VALUE CHAINS

FUTURE GREEN HYDROGEN VALUE CHAINS

COOPERATING WITH OTHER PARTIES IS KEY TO SUCCESS

Source picture: Statoil Source pictures: Gasunie

SUPPLY OPTIONS H₂ FROM CH₄ + CCS

Option 1: H₂ production in Norway

Option 2: H₂ production in NL

Option 3: NH₃ production in Norway

CO2 TRANSPORT AND STORAGE — NORWEGIAN CCS PROJECT

- CO₂ storage is foreseen in a saline aquifer on the Norwegian Continental Shelf
- Norwegian CCS project is driven by Norwegian Ministry of Petroleum and Energy and coordinated by Gassnova
 - Statoil has been awarded contract to develop storage scope Project is in development, FID planned for 2019
- Storage complex has sufficient capacity to store Magnum volumes

INVOLVEMENT OF THE OEM - https://www.mhps.com/news/20180308.html

KEY BENEFITS OF THE USE OF HYDROGEN IN CCGTS

- Direct significant reduction of CO₂ emissions (Mton/a) in The Netherlands by replacing CO₂ emitting fossil fuel by CO₂ neutral fuels
- Facilitating integration of wind and solar capacity in the energy system by means of flexible capacity
- Optimal use of already existing capacity of natural gas fired power stations
- Catalyst for a H₂ based economy, facilitating transition to CO₂ neutral fuels and feedstocks in other sectors (industry, transport and heating)
- Technology fitting in the end objective: facilitating the growth of a CO₂-free H₂ economy and facilitating the feed-in of H₂ from renewable sources in time within the same system

