

MTT micro turbine / CHP development program

Status & Challenges

12 May 2015

Wilfried Visser CTO

Outline

- Introduction
- EnerTwin micro CHP system
- Development program
- Technical Challenges
- EU cooperation

Introducing MTT

- MTT is developing micro turbine technology since 2006
- Development of micro turbine based CHP (combined heat power) systems started 2008
- MTT is located in Eindhoven Netherlands, and currently employs 16 highly qualified staff
- Management team:
 - Willy Ahout, CEO
 - Wilfried Visser, CTO
 - Luc Hamilton, COO
- To develop and commercialize its CHP products, MTT has risk sharing contracts with various relevant industrial partners and with knowledge institutes
- Together with its partners, ± 45 skilled engineers work on the development of advanced MTT micro turbine technology

Micro CHP applications

For consumers / SMEs:

- Substantial lower energy bills (up to 20-25%)
- Environmental friendly

• For governments (national / EU):

- CO₂ and NOx emissions reduction, substantial energy savings
- New economic activities and impulses

For energy companies (utilities):

- Reduced needs for high investments in new power plants
- New business models, green image, emission reductions
- Decentralized generation / smart grids

Specifications for the EnerTwin micro CHP system

Power (natural gas) input
 20 kW

Thermal power 15 kW

Electrical power 3.0 kW

• Net electric efficiency 15 %

• Power to Heat ratio 20 %

• Total efficiency 90 %

Weight 225 kg

Clean combustion
 < 37 ppm NOx

Substantial CO2 reductions 3 - 6 tons per year

Low noise < 55 dB(A)

Modulation range:

Heat : 6 – 15 kW Electricity : 1 – 3 kW

Additional specifications:

- Able to modulate down to ~30 %
- Maintenance > 5,000 hrs (± 2 years, similar to condensing boilers)
- Lifetime > 30,000 hrs +
- Remote control / smart grid ready

Development program

- 2008-2009 3kW micro turbine cycle design study
 - Based on knowledge obtained from general experience, literature
 - General state of the art performance/efficiency levels
 - Public turbocharger component performance maps

ASME paper GT2010-22007 or J_GTP-133-2011

- 2009-2011 MTT micro turbine and CHP system development
 - Test programs, detailed modeling analysis
 - Expanded technical team
 - New bottlenecks and new potential identified
 - Performance enhancement program

ASME paper GT2012-68685

- 2012 MTT CHP system engineering and prototyping
 - 1st field test phase (12 units)
- 2015 Engineering / Design for manufacturing
 - Improved performance, life and reliability
 - Reduce costs
 - 2nd field tests phase (up to 50 units)

ASME paper GT2015-42744

Micro turbine technology

Micro turbines

- < 100 kW
- Increasing number of interesting applications
 - Power generation
 - Aircraft propulsion
- Many development projects failed

Challenges

- Small scale effects
 - Low Reynolds number
 - Relatively large tip clearance
 - · Large area-volume ratio
 - High auxiliary system losses
 - Thermal management
- Market & Cost issues
 - Require large production volumes
- Recuperator
 - High temperature
 - Low costs
- Low NO_x stable combustion (potential is < 10 ppm)
 - Multiple fuels

EU cooperation - Vertical

5/13/2015

EU cooperation - Horizontal

Market	Regulations	FundingEmissions (vs. gas engines)Grid policies
OEMS	Demonstrator projects	Smart villagesCogenerationFuels: H2, bio-gas
Suppliers	Manufacturing, Cost reduct	• Generic technologies - Recuperator - Turbomachinery - Air bearings
Institutes Universities	Generic component development modelling, test facilities	 small scale effects high T materials air bearings novel cycles combined/&cogen

5/13/2015

Generic – multiple OEMs

EU cooperation – H2020 funding

•	System level	Vertical (specific)	Horizontal (generic)
	Combined / bottoming cycles (ORC)	Χ	
	Cogeneration (CHP)	,,	X
	Scaling studies	Χ	X
•	Component technologies		
	 Low cost high performance/high temperature recuperato 	r X	X
	Turbomachinery	X	X
	Manufacturing technology	X	X
	Materials		X
•	Alternative fuels		
	Bio gas, H2	X	X
•	Demonstrator projects		
	 Combined cycle/system demonstrators, ORC, fuel cell et 	c. X	X
	Small scale distributed power, smart villages		X
	Optimized operation & utilization	Χ	
	 Other applications (e.g. UAV, portable power) 	X	
5 /1	2/2015		

5/13/2015

Publications

- Visser W.P.J., Shakariyants S.A., Oostveen M. 'Development of A 3kW Micro Turbine For CHP Applications', ASME paper GT2010-22007, presented at the ASME TURBO EXPO 2010, 14-19 June, Glasgow, UK Also published in ASME Journal of Engineering for Gas Turbines and Power, April 2011, Vol. 133 / 042301-1
- Visser W.P.J., Shakariyants S.A., Later M.T.L. de, Ayed A.H., Kusterer K., 'Performance optimization of a 3kW Micro Turbine For CHP Applications', ASME paper GT2012-68686, to be presented at the ASME TURBO EXPO 2012, June 11-21, 2012, Copenhagen, Denmark
- Head A., Visser W.P.J., 'Scaling 3-36kW Microturbines', GT2012-68685, to be presented at the ASME TURBO EXPO 2012, June 11-21, 2012, Copenhagen, Denmark
- Kornilov V.N., Shakariyants S.A., Goey L.P.H., 'Novel Burner Concept For Premixed Surface-stabilized
 Combustion', GT2012-69036, to be presented at the ASME TURBO EXPO 2012, June 11-21, 2012, Copenhagen,
 Denmark
- Visser W.P.J., Dountchev I.D. 'Modeling Thermal Effects on Performance of Small Gas Turbines', ASME paper GT2015-42744, to be presented at the ASME TURBO EXPO 2015, June 15-19, Montreal, Canada
- Duijnhouwer F., Nijmeijer H. 'Modelling and simulation of a compliant tilting pad air bearing', Journal of Mechanical Engineering Science, 2015
- Borisavljevic, A.; Brands, M.; Lomonova, E., "Vector control of very-high-speed PM machines," *Electrical Machines (ICEM), 2012 XXth International Conference on*, vol., no., pp.2462,2468, 2-5 Sept. 2012
- van Meijl, W.; Muisers, G.; Borisavljevic, A.; Brands, M.; Lomonova, E., "Sensorless observation of a very-high-speed permanent magnet synchronous machine," Sensorless Control for Electrical Drives and Predictive Control of Electrical Drives and Power Electronics (SLED/PRECEDE), 2013 IEEE International Symposium on , vol., no., pp.1,8, 17-19 Oct. 2013

5/13/2015

Wilfried Visser

- (CTO)
- Micro Turbine Technology MTT
- De Rondom 1
- 5612 AP Eindhoven
- Tel +31 6 20746562
- wilfried@mtt-eu.com
- <u>www.mtt-eu.com</u>