Laboratory Test Simulating In-Situ Water and Salt Water Coalescence/Migration for Gas Turbine Filters

Al Vatine, President

LMS Technologies, Inc. 6423 Cecilia Circle Bloomington MN 55439

www.lmstechnology.com

LMS A CORE FACILITY FOR AIR FILTRAION

- Filter and media testing
- Sale of fully automated testing system for all standards
- Contract product development
- Contract development for new Standards
- Internal technology development
 Incorporation of nano fibers onto single fibers
 Soft impaction Technology

Innovative nano-fiber Technology

Background

- Gas turbine and aerospace filters endure very harsh environments specially at coastal sites
- Existing tests do not correspond to the real world applications
- A laboratory test is needed to simulate the important natural phenomena and eliminate the variable factors

Factors Of Interest

- Coalescence translates to the efficiency of the filter for liquid droplets
- Migration suspended particles or dissolved salts traveling through media pores

High and Low Efficiency Filters

- High efficiency (conical, cylindrical, and V-bank filters) F & E class filters
- Low efficiency (louvers and pre-filters)
 - Requires the most care in testing
 - Creates most of the problems
 - Multistage System Testing

Detection Instruments

- SMPS Range of size 2.5-1000 nanometers
- Time-of-flight particle sizer 0.2-750 micron
- Sodium flame photometry
 - Accuracy very much size distribution dependant

Simulation Test Duct

Test Capabilities:

- Able to control and perform tests under specified conditions between:
- 1,000 15,000 CFM system airflow
- Greater than 10 inches water gauge (2.5 kPa) restriction
- o 160 PSI (o-1100 kPa) pulse pressures
- 20° to 120° F (10 50° C) **temperatures**
- 20% 97+% **RH**
- o 500 gram per minute dust feed Proprietary design with no dust loss
- Standard or customer specified dusts and aerosols
- Rain or mist simulation
- Full directional water spray (Other fluids may be available)
- 0-120 MPH upstream wind speeds to mimic sand storm with up to 500 grams of dust per minute (in addition to system flow)
- Fractional efficiency of test dust and salt at requested intervals
- Water fractional efficiency using proprietary particle counters and methods
- Gravimetric efficiency at requested intervals
- Sampling with 0.45 micrometer membrane filters
- Load up pulse down sequences

Advanced Features:

- Snow and ice rain and salt water rain generation
- Fractional efficiency for wet or dry paint
- Gas detection and analysis for 135 different gases
- Specialty cigarette smoke to study soot
- Fractional efficiency with high concentration oil up to liters/minute spray
- Sodium Flame Photometer for salt migration and efficiency test

Test Parameters - Low Efficiency

- Wide spectrum particle size distribution
 - 0.3 100 microns
- 0.5 2 liters per minute liquid flow rate
- 60 80% relative humidity
- Minimum of 1 hour challenge time

Aerosizer measurements

Observations - Low Efficiency

- Shattering leads to negative efficiencies in the sub-micron range
- Build up and release of large water particles (up to 750 microns)

Aerosizer measurements

Time Elapsed, min.:	1 min.	2 min.	3 min.	4 min.	5 min.	6 min.	7 min.	8 min.	9 min.	10 min.	Average
Size Range (μm)	Initial			Fractional Efficiency (%)							
0.2-0.3											0.0
0.3-0.4											0.0
0.4-0.6				Water Br	eak-Up Re	gion - No	Filtration				0.0
0.6-0.8											0.0
0.8-1.0							1				0.0
1.0-1.5	7.1	0.0	8.1	6.8	8.3	8.4	0.0	7.9			5.8
1.5-2.0	35.1	0.0	35.6	35.5	35.9	35.4	0.0	35.4			26.6
2.0-2.5	64.8	0.0	64.9	65.6	65.2	65.3	0.0	65.0			48.9
2.5-3.0	76.6	0.0	75.9	76.1	76.3	76.3	0.0	76.6			57.2
3-4	92.8	0.0	93.6	93.5	93.7	93.3	0.0	93.5			70.1
4-5	99.8	0.0	99.7	100.0	100.0	100.0	0.0	99.9			74.9
5-6	99.9	0.0	100.0	100.0	100.0	100.0	0.0	100.0			75.0
6-8	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0			75.0
8-10	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0			75.0
10-12	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0			75.0
12-15	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0			75.0
15-20	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0			75.0
20-30	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0			75.0
30-40	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0			75.0
40-50	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0			75.0
50-70	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0			75.0
70-100	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0			75.0

Time Elapsed, min.:	1 min.	2 min.	3 min.	4 min.	5 min.	6 min.	7 min.	8 min.	9 min.	10 min.	Average
Size Range (μm)	Initial			Fractional Efficiency (%)							
0.2-0.3											0.0
0.3-0.4											0.0
0.4-0.6				Water Bre	eak-Up Re	gion - No	Filtration				0.0
0.6-0.8											0.0
0.8-1.0											0.0
1.0-1.5											0.0
1.5-2.0											0.0
2.0-2.5											0.0
2.5-3.0											0.0
3-4		I	I	I	I		I	I	1	I	0.0
4-5	5.2	5.8	5.9	3.1	2.6	5.1	1.9	2.8	3.1	4.6	5.0
5-6	9.8	10.1	11.6	8.1	6.3	8.9	7.7	5.6	6.9	11.0	10.8
6-8											0.0
8-10											0.0
10-12											0.0
12-15				Water Bre	eak-Up Re	gion - No	Filtration				0.0
15-20											0.0
20-30											0.0
30-40											0.0
40-50											0.0
50-70											0.0
70-100											0.0

Velocity	1 m/s	2 m/s	3 m/s	4 m/s	5 m/s	6 m/s			
Size Range (μm)				Fractional Efficiency (%)					
0.2-0.3									
0.3-0.4									
0.4-0.6	No	Efficiency Reg	ion						
0.6-0.8	NO	Efficiency Reg	1011	16.3%	15.3%	6.2%			
0.8-1.0				27.4%	25.8%	21.1%			
1.0-1.5				35.0%	35.7%	32.5%			
1.5-2.0			9.5%	45.5%	40.9%	44.4%			
2.0-2.5			19.0%	47.1%	41.4%	43.2%			
2.5-3.0		18.5%	24.1%	56.2%	45.7%	45.7%			
3-4		39.6%	31.1%	68.5%	58.4%	56.4%			
4-5		58.6%	79.5%	77.7%	79.3%	77.6%			
5-6		60.4%	88.4%	81.9%	87.5%	85.2%			
6-8	2.9%	61.3%	91.3%	83.0%	92.1%	94.5%			
8-10	19.1%	66.0%	94.7%	83.2%					
10-12	39.5%	72.9%	97.0%	90.2%					
12-15	53.6%	83.5%	99.0%						
15-20	60.2%	93.2%							
20-30	63.0%	63.0% 80.8% 100% Filtration Region							
30-40	80.8%								
40-50									
50-70									
70-100									

Test Parameters - High Efficiency

- Narrow spectrum particle size distribution
 - Up to 10 microns
- 0.5 1 liter per minute liquid flow rate
- >80% relative humidity

Aerosizer measurements

Test Result - High Efficiency

Combined SMPS and time-of-flight measurements

Observations - High Efficiency

- Migration effects
 - Build up of ice or water in the pleat packs
 - Dissolved salt water particles are forced through the pores
 - Sodium flame photometer is a better tool for measuring migration, as it recognizes only salt particles passing through
 - If all stages are tested

Conclusions

- For low efficiency filters, the phenomenon of water shattering and Burp have been observed and measured
- For high efficiency filters, ice build up on the pleats has been simulated
- Dissolved salt water particles migrating through the high efficiency filter has been measured
- The Simulation Test Duct is a good system to simulate the real world environment of water and salt water coalescence/migration for gas turbine filters

Q&A

Thank You