

Integration of MGT with Solar based technologies

Professor Abdulnaser Sayma

Micro Gas Turbine (MGT) Meeting

MGT in the European Energy Scenario

18 March 2016

Topics

- Distributed solar thermal technology options and status
 - Parabolic dish-Sterling
 - Parabolic dish-Micro Gas Turbine
 - CSP Organic Rankine Cycles (ORCs)

- OMSoP project
 - Technology challenges to integrate Solar with MGT

Parabolic dish Sterling

Characteristics:

- ➤ High design point efficiency
- ➤ Low rotational speed off the shelf generators bulky
- ➤ Poor reliability
- ➤ Dispatchability may be difficult (Hybridisation with fuels and thermal storage)

TY UNIVERSITY Parabolic dish MGT

- Promising Technology under development
- Currently, lower design point efficiency than Sterling
- Potential for higher reliability
- Better potential for dispatchability through hybridisation with fuels and thermal storage

- ➤ Operate at much lower temperatures ~ 300 °C
- > Intermediate fluid: Easy to hybridise
- Can be used for CHP
- Despite continued R&D, no commercially available systems below 50kWe
- Bulky Large Heat exchangers
- Low design point efficiency

- ➤ The demonstration of concentrated solar power technology using a parabolic dish system powering a micro-gas turbine 3-10 kWe
- > Techno-economic system optimisation
- ➤ Market and cost analysis Worldwide

- Alternative to sterling engines (reliability issues)
- > Better solar dish: reflective materials, weight, control
- ➤ High temperature receiver > 900°C
- Competitive cost of electricity

Project Structure EU WP4 **Project Management and** Dissemination WP2 WP3 WP1 System Design System optimisation Solar Receiver Market and cost analysis System integration **Solar Concentrator** Life Cycle analysis **Demonstration** Micro gas turbine

- Demonstration Unit
 - 1. Improved MGT starting from a conventional design
 - 2. Optimised turbine and compressor designs
 - 3. Alternative shaft and bearing arrangement for rotor dynamic stability
 - 4. Ability to withstand harsh conditions, with a unit moving in 3D with the dish orientation
- Optimised MGT for future systems
 - Produce an optimised design for a unit close to market.

Parabolic dish MGT

- The demonstration of concentrated solar power technology using a parabolic dish system powering a micro-gas turbine – 3-10 kWe
- Techno-economic system optimisation
- Market and cost analysis Worldwide

Micro turbine design, construction and testing at City

reconfiguration

System performance

- What is the trade-off between high MGT and the overall CSP system capital cost → cost of electricity
- What are the most cost effective dispatchable CSP-MGT system:
 - With thermal Storage?
 - With Electrical Storage?
 - With Flywheel
 - Hybrid with other fuels
- What are the technological advances required to bring these systems to market?

System layout

MGT on top of the dish

Secondary receiver with MGT on the ground

Challenges - I

 High efficiency at a wide range of operating conditions and/or high annual generated power

Innovative component designs

Cycle innovations for optimum techno-economics

Control (performance and reliability)

- A practical and feasible control strategy is required to:
 - 1. Achieve maximum power at any DNI
 - 2. Protect the system from extreme conditions

Thank you

PolyBioGT

OMSoP

ANEMONE

SolGATs

NextMGT