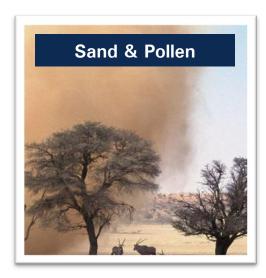


Filtration Workshop


What do we want to achieve?

- Understand why filtration is needed
- Understand what is filtration
- What standards are available
- A closer look to EN779 and EN1822
- Understand your actual application
- Capex and opex considerations

Why filtration for turbomachinery

Operating environments



Why filtration for turbomachinery

Air is the working fluid

Consumed air volume

- Soccer field of 234m high
- Contains sand, pollen, hydrocarbons...
- Examples:
 - Urban = $15 \mu g/m^3 = >0,025 kg/h$
 - Coastal = $25 \mu g/m^3 => 0.040 kg/h$
 - Desert = 120 μg/m³ => 0,200 kg/h

Why filtration for turbomachinery

Erosion (particles $> 5-10\mu m$)

Fouling (particles < 5µm)

Corrosion (pitting)

Wet corrosion, hot corrosion

Filtration Workshop

What do we want to achieve?

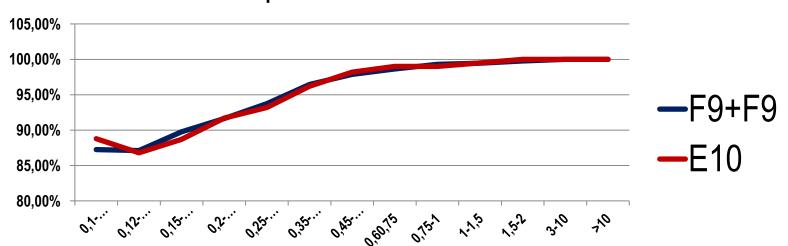
- Understand why filtration is needed
- Understand what is filtration
- What standards are available
- A closer look to EN779 and EN1822
- Understand your actual application
- Capex and opex considerations

Is a filter a strainer?

Everybody knows the meaning of this word

For A Very Complex Discipline...

(Too) Many parameters for the known equations affecting this phenomenon


Filtration is %

75%x50% = 37,5% penetration

50%x50% = 25% penetration

75%x10% = 7,5% penetration

10%x10% = 1% penetration

Particulate efficiency vs Arrestance

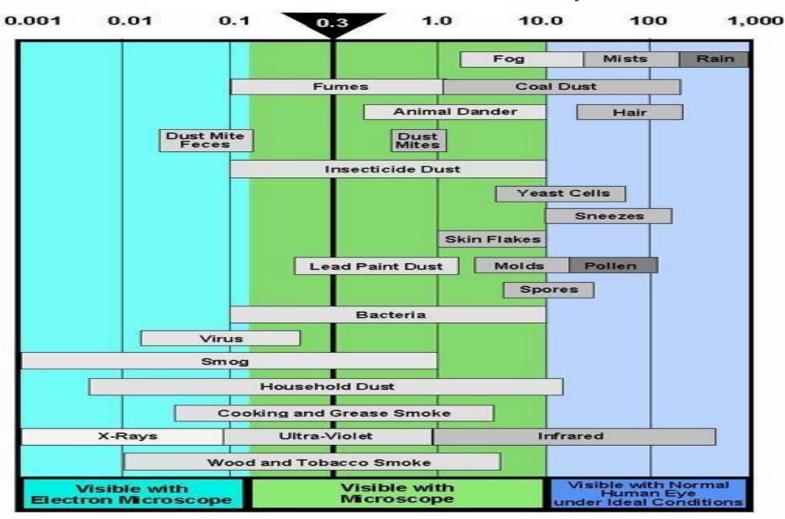
Arrestance = Mass efficiency

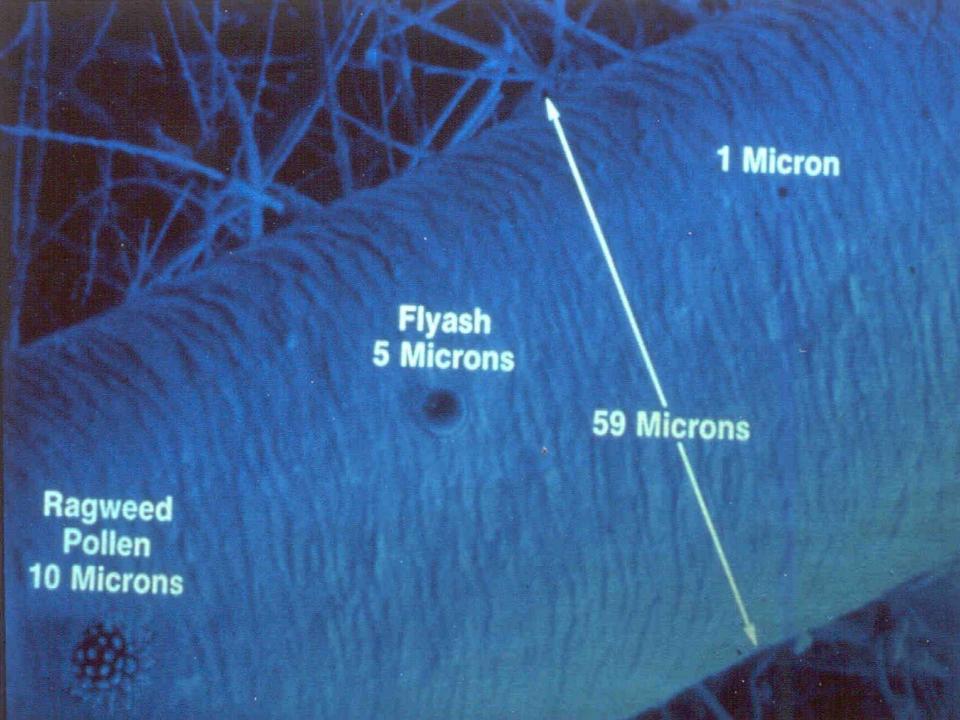
$$1pcs = 100g$$

$$1pcs = 62,5\%$$

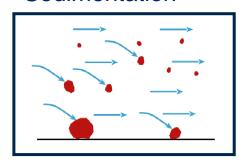
$$1pcs = 10g$$

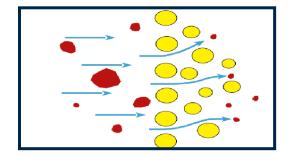
$$1pcs = 6.3\%$$

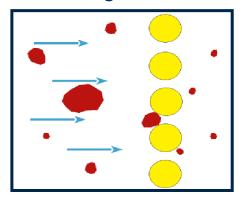


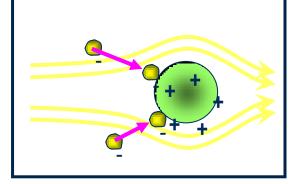

$$1pcs = 0.6\%$$

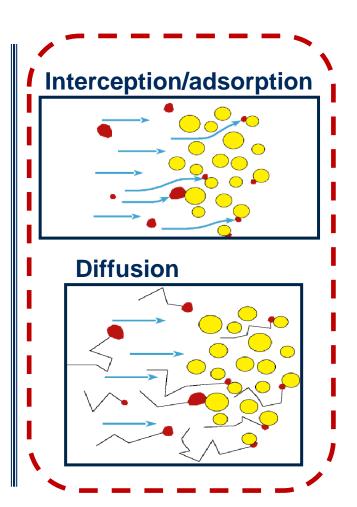
$$1pcs = 3\%$$


Filtration – Particle Size Comparison

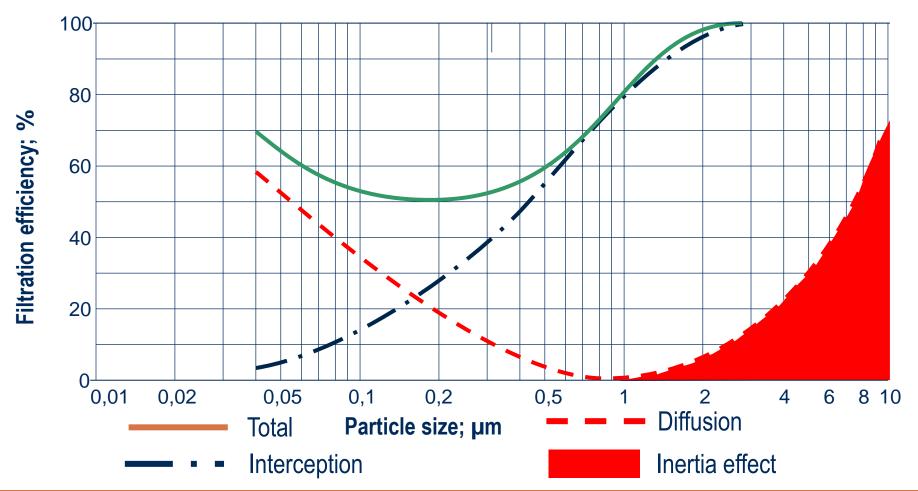



Sedimentation


Inertial effects



Straining


Electrostatic charge

Combined filtration efficiency filtration principle as an influence on filtration efficiency

Parameters influencing a filter's efficiency

Fouling / Dust cake

Charged Fibers

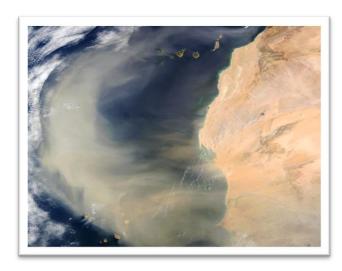
Relative Humidity

Type of particles

Charged Particles

Others (pH,...)

Temperature



Understanding other factors...

- Dust Concentration
- Environmental Changes
- Usage Conditions (Operating Load)

Operating loads can be defined by the following:

- Base Load >6,500 hours
- Intermediate 3,000 6,500 hours
- Peaker <3,000 hours

Filtration Workshop

What do we want to achieve?

- Understand why filtration is needed
- Understand what is filtration
- What standards are available
- A closer look to EN779 and EN1822
- Understand your actual application
- Capex and opex considerations

What standards are available?

Why filtration standards are needed:

- Need for evaluating & comparing filter performances to make correct choice for applications
- Reproducibility / repeatability of tests
- Create uniform classifications / avoid creation of all kinds of custom(er) standards

What standards are available?

Europe:

- EN779 (general ventilation / coarse and fine)
- EN1822 (clean room / very high efficiency)

US:

- ASHRAE 52.1 (general ventilation) → Obsoleted
- ASHRAE 52.2 (general ventilation / replaces 52.1)
- → Standards for particulate filters

NEW INITIATIVE

Filtration Workshop

What do we want to achieve?

- Understand why filtration is needed
- Understand what is filtration
- What standards are available
- A closer look to EN779 and EN1822
- Understand your actual application
- Capex and opex considerations

EN779:2012

European Committee for Standardization Comité Européen de Normalisation Europäisches Kommitee für Normung

- 'Particulate air filters for general ventilation'
- Filter element test (no system test)
- Accelerated test (vs. real life conditions)
- Coarse (G-class), Medium (M-class) and Fine filters (F-class)

Test procedure (**F**-class):

- Measure initial fractional efficiency w/ DEHS
- Load 30g of ASHRAE 52.1 dust: measure initial gravimetric efficiency & fractional efficiency w/ DEHS
- Load ASHRAE 52.1 dust until 450Pa restriction
 - At min. 4 steps during loading measure:
 - Fractional efficiency w/ DEHS
 - Arrestance on ASHRAE 52.1 dust
 - Weight of ASHRAE 52.1 dust added

Note: test procedure for G-class filters reports dust arrestance performance (no DEHS used)

Changes in the NEW EN779:2012

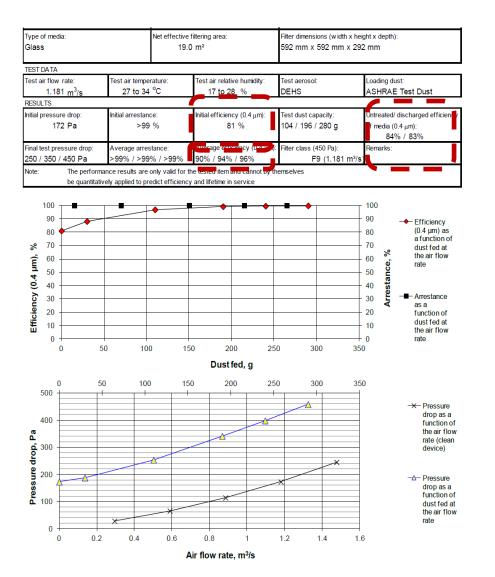

Discharging of media by soaking media in Isopropanol

Table 1— Classification of air filters 1)

Group	Class	Final test pressure drop	Average arrestance ($A_{\rm m}$) of synthetic dust	Average efficiency (E _m) of 0,4 µm particles %	Minimum Efficiency ^a of 0,4 μm particles %
Coarse	G1	250	50 ≤ A _m < 65	-	-
	G2	250	65 ≤ A _m < 80	-	-
	G3	250	$80 \le A_{m} < 90$	-	-
	G4	250	90 ≤ <i>A</i> _m	-	-
Medium	M5	450	-	$40 \le E_{\rm m} < 60$	-
	M6	450	-	$60 \le E_{\rm m} < 80$	-
Fine	F7	450	-	$80 \le E_{m} < 90$	35
	F8	450	-	$90 \le E_{m} < 95$	55
	F9	450	-	95 ≤ <i>E</i> _m	70

^a Minimum efficiency is the lowest efficiency among the initial efficiency, discharged efficiency and the lowest efficiency throughout the loading procedure of the test.

Filter class (450 Pa): F9 (1.181 m³/s)

Initial efficiency (0.4 μm): 81 %

Average efficiency (0.4 μm): 90% / 94% / 96%

Loading dust: ASHRAE Test Dust

Untreated/ discharged efficiency of media (0.4 μm): 84% / 83%

Filtration efficiency

Air filter's ability to remove dust.

- Particulate Efficiency: %
- Weight Efficiency = Arrestance: %

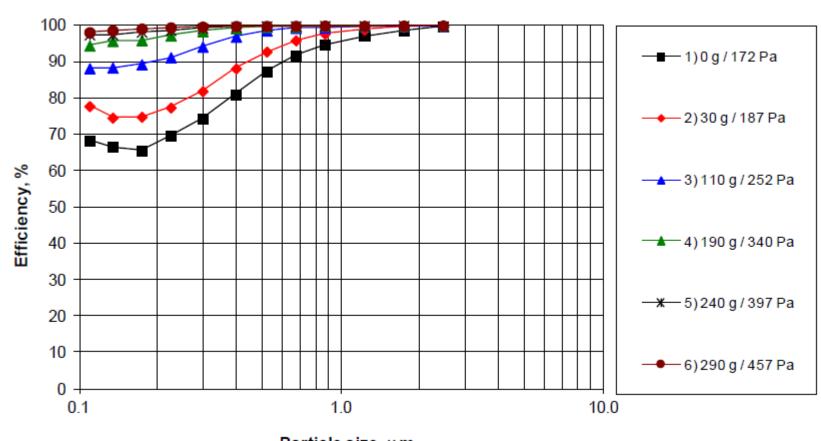
The terms mean:

Coarse filter = weight efficiency Fine filter = particulate efficiency EPA / HEPA = particulate efficiency

Focus on different %!

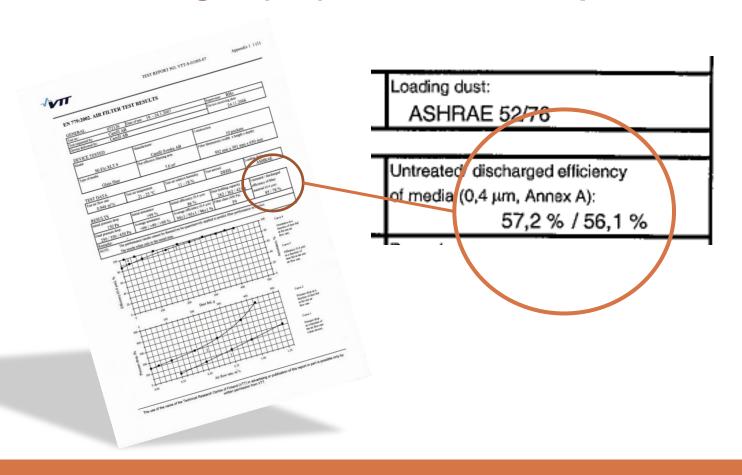
Dust Holding Capacity

Specifies the amount of dust that collects in a filter during the operation period until the final pressure drop. (I.e. 450Pa acc. EN779 std)
Expressed in grams [g].


Rule of thumb:

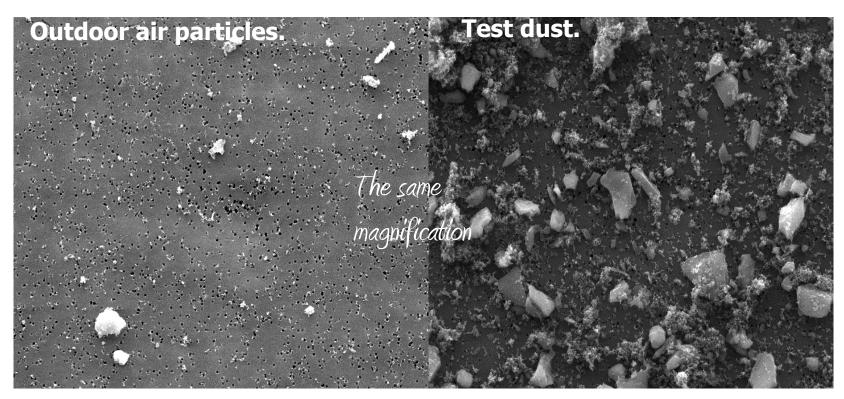
The higher the filter class the less dust holding capacity, and vice versa.

Pay attention to test dust used!



Filter efficiency development during an EN779 test

It is mandatory for all test reports to include a discharged (ME) value to be compliant



Shortcomings of EN779:2012

- Test dust vs real life dust (SEM pictures on next slide)
- Pulse clean ability: not covered
- Pre-filtration: not considered
- High humidity
- IPA soaking effect on media
- Often manipulated (test dust, final dP etc)

The difference between the laboratory and the real life

- Tests in laboratories are in a unique and ideal/controlled environment.
- Test dust and dust input rate is artificial.
- Filtration efficiency at 0.4 microns gives a hint at the comparison with real life.

Filtration Workshop

Coffee break

(20 min)

A closer look at EN1822:2009

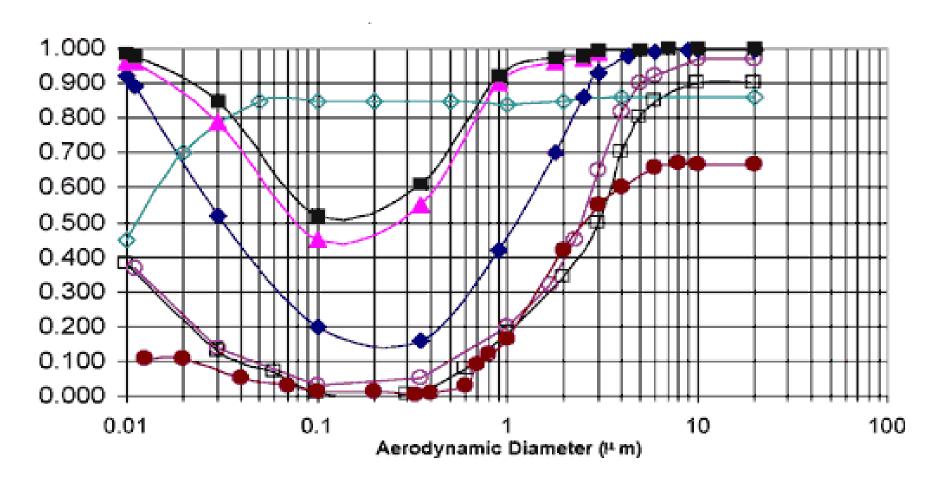
EN1822:2009

European Committee for Standardization Comité Européen de Normalisation Europäisches Kommitee für Normung

EPA = **Efficient Particulate Air**

HEPA = <u>High Efficiency Particulate Air</u>

ULPA = <u>Ultra Low Penetration Air</u>


A closer look at EN1822:2009

ETN Test procedure (**E**-class):

- Scope: 'High efficiency air filters'
- Focus is on efficiency but on least efficient particle size (MPPS)
- Most Penetrating Particle Size or MPPS
 - Usually 0,1μm < MPPS < 0,3μm
 - EPA (E-class), HEPA (H-class) and ULPA (U-class) filters
- Non-destructive test DEHS
 (No dust loading as on EN779:2012)
- Also includes discharging for synthetic filters.

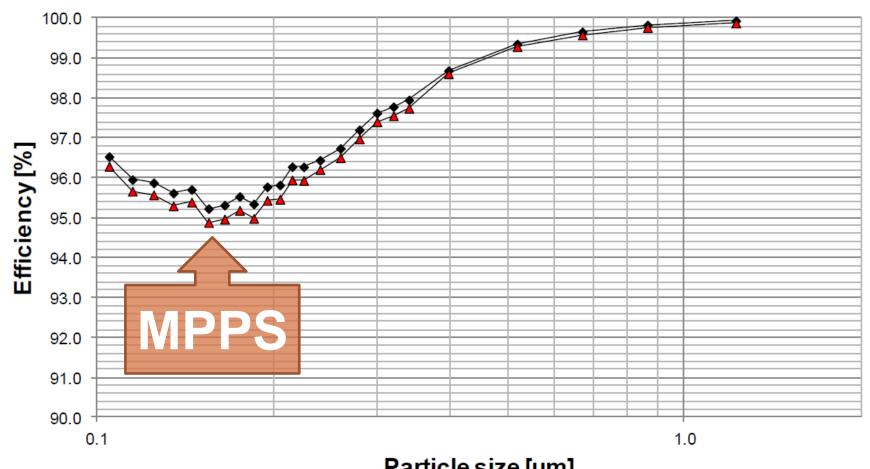
Example graphs of MPPS

A closer look at EN1822:2009

Table 1 — Classification of EPA, HEPA and ULPA filters

Filter Group	Integral value		Local value ^{a b}		
Filter Class	Efficiency (%)	Penetration (%)	Efficiency (%)	Penetration (%)	
E 10	≥ 85	≤ 15	c	c	
E 11	≥ 95	≤ 5	c	c	
E 12	≥ 99,5	≤ 0,5	c	c	
H 13	≥ 99,95	≤ 0,05	≥ 99,75	≤ 0,25	
H 14	≥ 99,995	≤ 0,005	≥ 99,975	≤ 0,025	
U 15	≥ 99,999 5	≤ 0,000 5	≥ 99,997 5	≤ 0,002 5	
U 16	≥ 99,999 95	≤ 0,000 05	≥ 99,999 75	≤ 0,000 25	
U 17	≥ 99,999 995	≤ 0,000 005	≥ 99,999 9	≤ 0,000 1	

^a See 7.5.2 and EN 1822-4.


^b Local penetration values lower than those given in the table may be agreed between supplier and purchaser.

^c Group E filters (Classes E10, E11 and E12) cannot and shall not be leak tested for classification purposes.

A closer look at EN1822:2009

Efficiency curve example

Particle size [µm]

Filtration Standards: Overview

Standard	Ratings	Description	Efficiency testing	Efficiency determination	Dust loading
Ashrae 52.2	MERV 1- 16	American standard commonly used also for GT filters	Initial efficiency and 4 increments of dust loading	Initial efficiency – based on average efficiency based on three particle size groups (E1, E2 & E3)	Ashrae dust to 1000Pa
EN779 G1-G4, M5-M6, F7-F9		European standard commonly used for GT filters. Globally used and accepted.	Initial efficiency and 4 increments of dust loading	Initial efficiency – based on average efficiency based on 0,4µm particle size.	Ashrae dust to 450 Pa
EN1822 E10-E12, H13-H4, U15-U17		Internationally accepted as the standard for measuring EPA, HEPA and ULPA efficient filters.	Initial efficiency only	Initial efficiency rating – based on efficiency on MPPS. Where filter is least efficient.	No dust loading

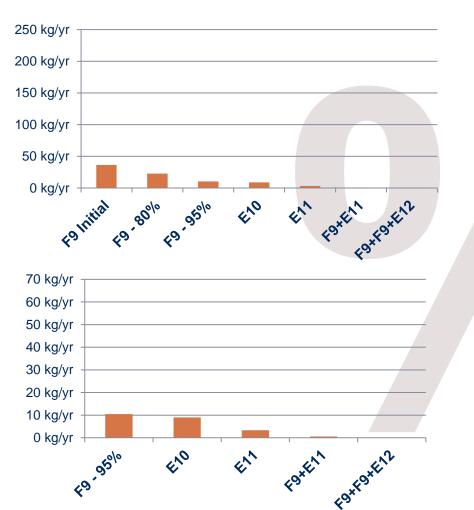
What about ASHRAE 52.2

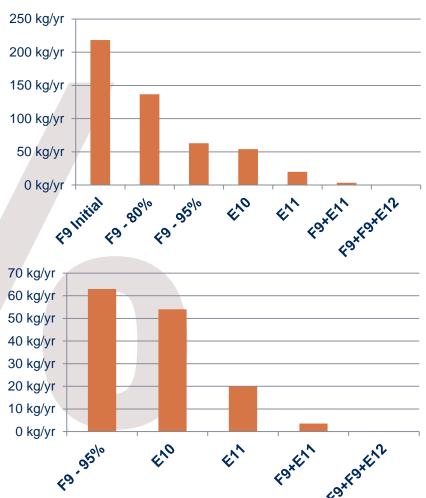
ASHRAE Standard 52.2-1999				ASHRAE 52.1		EN779	EN 1822
Minimum Eff Reporting Value	Composite Average Particle Size Efficiency, % in Size Range, µm			Average	Average Dust	Efficiency	Efficiency
	Range 1	Range 2	Range 3	Arrestance	Spot Efficiency	Average Eff at 0.4 µm	Average Eff at MPPS
MERV	0.30 - 1.0	1.0 - 3.0	3.0 - 10.0	%	%		%
1	n/a	n/a	E ₃ <20	A _{avg} <65	<20	G1	
2	n/a	n/a	E ₃ <20	A _{avg} <65	<20	G2	
3	n/a	n/a	E ₃ <20	A _{avg} <70	<20		
4	n/a	n/a	E ₃ <20	A _{avg} <75	<20		
5	n/a	n/a	E₃≥20	80	20	00	
6	n/a	n/a	E₃≥35	85	20-25	G3	
7	n/a	n/a	E₃≥50	90	25-30	G4	
8	n/a	n/a	E₃≥70	92	30-35		
9	n/a	n/a	E₃≥85	95	40-45		
10	n/a	E ₂ ≥50	E₃≥85	96	50-55	M5	
11	n/a	E ₂ ≥65	E₃≥85	97	60-65		
12	n/a	E ₂ ≥80	E₃≥90	98	70-75	M6	
13	n/a	E ₂ ≥90	E₃≥90	98	80-85	F7	
14	E₁≥75	E₂≥90	E₃≥90	99	90-95	F8	
15	E₁≥85	E ₂ ≥90	E₃≥90	99	95	F9	
16	E₁≥95	E₂≥95	E₃≥95	100	99	E10	<85
N/A	N/A	N/A		N/A	N/A	E11 E12	<95 <99.5
			N/A			H13 H14 U15 U16 U17	<99.95 <99.995 <99.9995 <99.99995 <99.999995

Filtration Workshop

What do we want to achieve?

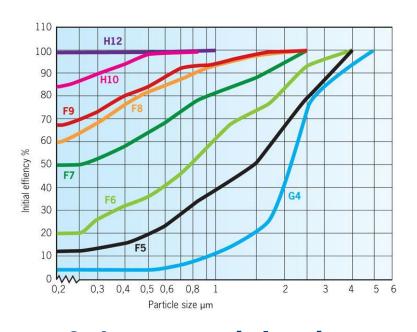
- Understand why filtration is needed
- Understand what is filtration
- What standards are available
- A closer look to EN779 and EN1822
- Understand your actual application
- Capex and opex considerations




DUST PENETRATION

 PM_{10} : 20µg/m³ (i.e. Europe)

 PM_{10} : 120 μ g/m³ (i.e. Middle East))



Filter Performance

A higher filter class means:
A higher degree of separation
A cleaner engine
Longer service intervals
Higher availability
Lower operating costs

For example: penetration on 0.4 µm particles is reduced typically 25% for an F8 filter to less than 0.5% in an E12 filter

Filtration Workshop

What do we want to achieve?

- Understand why filtration is needed
- Understand what is filtration
- What standards are available
- A closer look to EN779 and EN1822
- Understand your actual application
- Capex and opex considerations