

ISO standardization program

Background

Ongoing projects

Conclusions

Background – today situation

All currently used standards in industry have origin in different markets with different applications and different needs

Although valuable in their own right, currently used standards do not cover all aspects and needs of various applications used for rotary machinery

Different standards are used in different regions of the world

Background - ISO/TC142 WG9

Working Group 9 (WG9) created in 2006

Technical experts from various filtration companies from various countries

Working under ISO/TC 142: "CLEANING EQUIPMENT FOR AIR AND OTHER GASES"

- WG3: ventilation (HVAC)
- WG4: HEPA and ULPA
- WG5: dust collectors
- WG9: rotary machinery

"Particulate air filter intake systems for rotary machinery and stationary internal combustion engines"

Develop internationally accepted standards

Develop standards for different filtration applications used for rotary machinery

ISO standardization program

Background

Ongoing projects

Conclusions

Ongoing projects within WG9

The actual ISO 29461 set of standards consists of:

- Part 1: Static filter elements
- Part 2: Cleanable (Pulse jet) filter systems
- Part 3: Mechanical integrity of filter elements
- Part 4: In-situ testing
- Part 5: Marine and Offshore environment filter systems
- Part 6: Cartridge testing method

"Static filter elements"

Base platform: EN779, ASHRAE 52.2, earlier ISO work

Cover filters from coarse to E11/E12 class

New treatment for electrostatically enhanced filters

No classification system yet included

→ released in 2013

Reporting of test results

Efficiency Efficiency Filter Initial (E ₂) Conditioned® (Initial - ΔE ₂) Dust loaded 50g Dust loaded (final dp) Media Initial Conditioned	yyy-mm-dd De ng area: ive humidity: (gravimetric iency at 50g) v versus DEH 0,4 µm ± ± ±	% Te ca	Supervisor receiving da Construction Actual filter Test aeroso Loading du Cest dust apacity arritcles	ate: yyyy-mm-do on: r dimensions (V	W×H×D):
rest no.: Date of test: yy rest requested by: Device supplied by: Dev	De ng area: ive humidity: (gravimetric idency at 50g) versus DEN 0,4 µm ± ± ±	% Te ca	Construction Actual filter Test aeros Loading du feet dust apacity particles Partic 0,6 µm ±	on: r dimensions (V ol: DEHS ust: ISO 12103- Remark: le Size ^b 0.8 µm ±	####D): -A2 1,2 μm ± ±
est requested by: Device supplied by: Device supplied by: Device TESTED Addel: Manufacturer: Test air lemp: Effective filterin Test air temp: Test air relative filterin Test air lemp: Test air relative filterin Efficiency Filter Initial (E ₅) Conditioned® (Initial - ΔE ₀) Dust loaded filterin Media Initial Conditioned	De ng area: ive humidity: (gravimetric idency at 50g) versus DEN 0,4 µm ± ± ±	% Te ca	Construction Actual filter Test aeros Loading du feet dust apacity particles Partic 0,6 µm ±	on: r dimensions (V ol: DEHS ust: ISO 12103- Remark: le Size ^b 0.8 µm ±	####D): -A2 1,2 μm ± ±
rest requested by: Device supplied by: Device Supplied by: Device Supplied by: Device Supplied by: Device Supplied by: Device TESTED Manufacturer: Effective filterin Test air temp: Test air relative filterin Test air relative filterin Test air relative filterin Test air relative filterin Test air temp: Test air relative filterin Test air temp: Test air relative filterin Test air temp: Test air	De ng area: ive humidity: (gravimetric idency at 50g) versus DEN 0,4 µm ± ± ±	% Te ca	Construction Actual filter Test aeros Loading du feet dust apacity particles Partic 0,6 µm ±	on: r dimensions (V ol: DEHS ust: ISO 12103- Remark: le Size ^b 0.8 µm ±	####D): -A2 1,2 μm ± ±
Device supplied by: DEVICE TESTED Acidel: Manufacturer: Type of media: Effective filterin TEST DATA Test air temp: Test air relation from the more stair flow rate: Test air temp: Test air relation from the more stair flow rate: Test air temp: Test air relation from the more stair flow rate: Test air temp: Test air relation from the more stair flow relation flow	ive humidity: (gravimetric iency at 50g) versus DEH 0,4 µm ± ±	% Te ca	Construction Actual filter Test aeros Loading du est dust apacity articles Partic 0,6 µm	on: r dimensions (V ol: DEHS ust: ISO 12103- Remark: le Size ^b 0.8 µm	####D): -A2 1,2 μm ± ±
DEVICE TESTED Model: Manufacturer: Type of media: Effective filterin TEST DATA Test air femp: Test air relation Test air relation Test air femp: Test air femp: Test air relation Test air femp: Test air femp: Test air relation Test air femp: Test air femp: Test air femp: Test air relation Test air femp: T	(gravimetric iency at 50g) versus DEH 0,4 µm ± ± ±	% Te	Actual filter Test aeross Loading du est dust apacity earticles Partic 0,6 µm ±	ol: DEHS ust: ISO 12103- Remark: Ile Size ^b 0.8 µm ±	1,2 µm ±
Model: Manufacturer: gype of media: Effective filterin rest DATA est airflow rate: Test air temp: Test air relation rate: Test air temp: Test air relation rate: Test air temp: Test air relation rate rate rate relation rate relation rate rate rate relation rate rate rate rate rate rate rate rate	(gravimetric iency at 50g) versus DEH 0,4 µm ± ± ±	% Te	Actual filter Test aeross Loading du est dust apacity earticles Partic 0,6 µm ±	ol: DEHS ust: ISO 12103- Remark: Ile Size ^b 0.8 µm ±	1,2 µm ±
Test air temp: Test air relation	(gravimetric iency at 50g) versus DEH 0,4 µm ± ±	% Te	Test aerose Loading du est dust apacity earticles Partic 0,6 µm	OI: DEHS ust: ISO 12103- Remark: Ile Size ^b 0.8 µm ±	1,2 µm ±
Test air temp: Test air relation	(gravimetric iency at 50g) versus DEH 0,4 µm ± ±	% Te	Test aerose Loading du est dust apacity earticles Partic 0,6 µm	OI: DEHS ust: ISO 12103- Remark: Ile Size ^b 0.8 µm ±	1,2 µm ±
rest airflow rate: Test air temp: Test air relations a	(gravimetric iency at 50g) v versus DEH 0,4 μm ± ±	% Te	Loading du lest dust apacity particles Partic 0,6 µm	Remark: Resize 0,8 µm ±	1,2 µm ±
RESULTS initial pressure drop: Final test pressure drop: efficiency Efficiency Filter Initial (E_0) Conditioned® (Initial - ΔE_0) Dust loaded 50g Dust loaded (final dp) Media Initial Conditioned	(gravimetric iency at 50g) v versus DEH 0,4 μm ± ±	% Te	Loading du lest dust apacity particles Partic 0,6 µm	Remark: Resize 0,8 µm ±	1,2 µm ±
	eincy at 50g) versus DEH 0,4 µm ± ± ±	: ca	apacity particles Partic 0,6 µm ±	le Size ^b 0,8 μm ±	±
$\begin{array}{c c} & \text{drop:} & \text{efficiency} \\ \hline & \textbf{Efficiency} \\ \hline & \textbf{Efficiency} \\ \hline & \textbf{Filter} \\ & \text{Initial } (E_0) \\ & \text{Conditioned}^0 \text{ (Initial - } \Delta E_c) \\ & \text{Dust loaded } 50g \\ & \text{Dust loaded (final dp)} \\ \hline & \textbf{Media} \\ & \text{Initial} \\ & \text{Conditioned} \\ \hline \end{array}$	eincy at 50g) versus DEH 0,4 µm ± ± ±	: ca	apacity particles Partic 0,6 µm ±	le Size ^b 0,8 μm ±	±
$\begin{array}{c c} & \text{drop:} & \text{efficiency} \\ \hline & \textbf{Efficiency} \\ \hline & \textbf{Efficiency} \\ \hline & \textbf{Filter} \\ & \text{Initial } (E_0) \\ & \text{Conditioned}^0 \text{ (Initial - } \Delta E_c) \\ & \text{Dust loaded } 50g \\ & \text{Dust loaded (final dp)} \\ \hline & \textbf{Media} \\ & \text{Initial} \\ & \text{Conditioned} \\ \hline \end{array}$	eincy at 50g) versus DEH 0,4 µm ± ± ±		Particles Partic 0,6 μm ±	0,8 μm ±	±
Efficiency Filter Initial (E ₅) Conditioned® (Initial - ∆E _c) Dust loaded 50g Dust loaded (final dp) Media Initial Conditioned	0,4 μm ± ±	HS-pa	Partic 0,6 µm ±	0,8 μm ±	±
Filter Initial (E₀) Conditioned® (Initial - ΔΕ₀) Dust loaded 50g Dust loaded (final dp) Media Initial Conditioned	± ±		0,6 μm ±	0,8 μm ±	±
Filter Initial (E₀) Conditioned® (Initial - ΔΕ₀) Dust loaded 50g Dust loaded (final dp) Media Initial Conditioned	± ±		±	±	±
Initial (E ₀) Conditioned ^a (Initial - AE ₀) Dust loaded 50g Dust loaded (final dp) Media Initial Conditioned	±		±	±	±
Conditioneds (Initial - ∆E ₀) Dust loaded 50g Dust loaded (final dp) Media Initial Conditioned	±	+	±	±	±
Dust loaded 50g Dust loaded (final dp) Media Initial Conditioned	±	\pm			
Dust loaded (final dp) Media Initial Conditioned	±	\pm			
Media Initial Conditioned		4	±	±	+
Initial Conditioned					-
Conditioned		+			1
	±	+	± .	±	±
	±	+	±	±	±
ΔE _C (Initial-Conditioned) a The conditioned filter efficiency is calculated filter.	the media	took	different o	filelanas (filtor) =	F (filter) AF
b See the attached Interpretation of Test Report		lest.	conditioned e	midency (inter) =	E ₀ (inter) - ΔE_0
	ssure vs. ai	rflow	w		
300					_
A					
250		_	+		\dashv
200				P	\dashv
				/	
150					7
100		_			┙
		_6			
50	-0-0				\dashv
					⊥ ₌
0 0,25 0,5 0,7	5 1	1,	,25 1,5	1,75 B	2

New electrostatic discharge method

- IPA vapor treatment
 - After a period of 24 h, open the containers and prepare the media for particulate efficiency test (see A.2.4).

Key

- 1 sample
- 2 IPA vapour
- 3 liquid IPA

Figure A.3 — Principle of the isopropanol container (vessel and lid)

"Cleanable (Pulse jet) filter systems"

System aspect taken into account

- Pulse delivery system
- Self-cleaning system technology

Running project

Project work:

- Definition of scope
- Definition of test system
- Definition of test procedure
- Definition of test dust
- New approach for procedure

"Mechanical integrity of filter elements"

Characterize integrity of filter elements ('burst' or 'breach')

Scope, procedure, etc to be done

Lower activity project at the moment

"In-situ testing"

On-site evaluation of filter/system performance

Scope, procedure, etc to be done

Lower activity project at the moment

"Marine and Offshore environment filter systems"

Salt challenge

- Dry, wet/deliquescent
- New vs. loaded filters

Running project

Project work:

- Definition of scope
- Definition of test system
- Definition of test procedure
- 2nd draft to be created

"Cartridge testing method"

Pulse jet filter element test method

First draft document to be created

Lower activity project at the moment

ISO standardization program

Background

Ongoing projects

ISO

Conclusions

Conclusions

A new set of ISO standards ISO 29461 (part 1 to 6) are dedicated to filters for rotary machinery where part 1 is ready.

Wider scope for air filtration for rotary machinery in different environments using different applications

A standard provides a solid base of performance comparison - real life will always be different. Sharing experiences and feedback will be key.