

Bioenergy – Distributed power generation

Jori Sihvonen 18 March 2016

non-profit, Brussels based association founded in 1990

How it works

Umbrella of 3 Networks

EPC is an umbrella organisation representing the interests of the European wood pellet sector.

EIPS is a platform of European companies focused on the wood pellet business.

IBTC is a platform of international companies promoting the use of torrefied biomass as energy carrier.

How to stay informed and connected

AEBIOM Bioenergy Conference

AEBIOM MEMBERS

Full Members

Associate Members

APREN :::	AIREX	EXAPL	AR-TU KIMYA SANAPINETICAS	Arigna Fuels	BENET	Biobrændsels foreningen	BioEndev	CEG	bio. wanze	Bord na Móna 💸	Charmont	Cini
CPL	CPM EUROPE Tor Fritte 3 Andardy	H.Q.K CROATIAN CHAMBER OF ECONOMY	Česká peleta	DNV·GL	Drax	edora		 ∉ECN	enviva	ET	Energies nouvelles	© EFER
Holzenergie SCHWEIZ	cra-w	froling 🌑	german pellets	Asociația Producătorilor de Peleți și Brichete din România	G Göteborg Energi	S GreenWatt	⊕ HARGASSNER	HAWKINS WRIGHT	Blackwood TECHNOLOGY	Jeferco	HŸGEA	heig-vd
JENZ	Ж қомртесн	KWB	KG Kurzemes granulas	GDF SVCZ	# LATGRAN	MARQUARD & BAHLS	MHG	MIKTECH	PALAZZETTI	EURONEXT	PETERSON 🍣	POLYTECHNIK Biomass Energy
ANPEB agriculturations in	€ 2ZK		pro»pellets Austria	Renergy UK ITD. PROVIDERS OF BIOFUEL	ENERGY	Jeferco	SBE Latvia	SCHIEDEL Heizen, Lüften, Leben,	RIVER BASIN ENERGY	SEEGER ENGINEERING	SEKAB	pro»pellets Austria
Söderenergi	S SOLVAY BIOMASS ENERGY	Statkraft	SVEASKOG	Svenska trädbränsleföreninge	®tsi	TOTAL	⊗ VAPO	RFT	TORR COAL	UK PELLET COUNCIL	Valmet 🔷	VICTA
VISION ENERCY CROUP	windhager LA CHALEUR DE L'AVENIR	WOOD PELLET	Forest and Biomass Services Belgium sa	DONG energy	© Fortum Next generation energy company	W&P						

Bioenergy balance in 2013 (ktoe)

Biomass for households 41 599 ktoe and services 3 014 ktoe

European Energy Dependency, 2013

Source: AEBIOM based on Eurostat data

Source: AEBIOM based on Eurostat data

Source: AEBIOM based on Eurostat data and NREAPs

Electricity production from biomass in EU

Electricity production from biomass in the EU (2014)

Bioelectricity

Source: Eurostat, 2nd Progress Reports and NREAPs targets

Gross inland consumption of biomass in 2013 (ktoe)

Source: Eurostat, BASIS project, EPC Survey, Hawkins Wright and FAO

Number of plants in Europe consuming wood chips

Fuel capacity

Source: AEBIOM - Basis Bioenergy project - non-final

Project results shown in a GIS

http://www.basisbioenergy.eu/basis-gis.html

Wood biomass consumption by plant size class

Wood biomass consumption by energy use

Source: AEBIOM - Basis Bioenergy project

Micro and small scale CHP

	Micro scale CHP <5 kWel	Micro scale CHP 5-50 kWel	Small scale CHP 50-250 kWel	
Applications	Residential market	Small industries, services, micro grids etc.	Industry, services, DHC etc.	
Main products	Heat, by-product electricity	Heat, electricity	Heat, electricity	
Main feedstock	High quality solid biomass (woody sources), biogas, bio- oil ²¹ , preferably standardised quality fuel	Solid biomass (mostly woody sources), syngas, biomethane, biogas, bio-oil	Solid biomass (wood chips), biogas, syngas, bio-oil tolerating a wider quality range. Applicable fuels range from wood pellets to lower grade wood chips or even locally available non-wood or pre-treated biomass fuels derived from waste streams	
Technologies covered	Thermoelectrics, Stirling engine, steam cycles, organic Rankine cycle (ORC), internal combustion engine (IC), micro gas turbine (MGT), fuel cell (FC)	Stirling engine, steam cycles, ORC, gasification + IC, IC, externally fired micro gas turbine (EF-MGT)	Stirling engine, steam cycles, ORC, gasification + IC, IC, EF-MGT	

Micro and small scale CHP

Key Performance Indicators

	2013	2020
Electricity production costs		Reduction of 50%
Minimum lifetime suitable components for bio-oil engines and turbines		2,000 operational hours
Proven lifetime	No data	20.000 h (<5 kWel) / 35.000 h / 50.000 h (>50 kWel)
Electric system efficiencies based on solid state technologies	1%	2%
Electric system efficiencies based on thermodynamic cycles	No data	7% (<5 kWel) <10% -12% (5 - 50 kWel) 12-15 (<250 kWel)
Investment costs solid state technologies	20-30 EUR/W (depending on materials and suppliers)	10 EUR/W
Investment costs thermodynamic cycle technologies	4-25 EUR/W (depending on technology and fuel)	3.5 EUR/W
Reduction of emissions	In compliance with EN303-5	1/10 of the specifications in EN303-5 (except for NOx)

Micro and small scale CHP

Main technological challenges (from 2013)

- Cost reduction by technical optimization with consideration of serial production
- Reduction of maintenance costs
- Development of high temperature- and high corrosionresistant heat exchanger
- Material development (seals, heat exchanger, ...)
- Integration in smart houses and smart grid
- Development of efficient storage systems (electricity, heat) to avoid grid losses

Biogas

Key Performance Indicators

	2013	2020	
Diversification of raw material for biogas production	Biogas yield per ha of alternative energy crops is significantly lower than yield for maize ¹⁸	Increase of biogas yield of alternative energy crops by 20- 30%	
Increase of efficiency of biogas up-grading	Up-grading power consumption: Ø 0.25 kWh/Nm³	Up-grading power consumption: Ø 0.15 kWh/Nm³	
Cost reduction of biogas	A 500 Nm3/h upgrading plant costs about 7 500 €/Nm³ h	Cost reduction by 10-20%	
Improvement of load flexibility of biogas CHP systems	Part load operability of biogas CHP units > 60%	Part load operability of biogas CHP units > 40%	
Increase of efficiency of biogas CHP systems	Electrical efficiency of biogas systems is 33-45%	Efficiency improvements by 10-20%	
GHG emission reduction by the use of waste heat of biogas CHP units	About 50% of European biogas plants have implemented appropriate use of "waste heat".	80% of all European biogas plants have implemented the use of "waste heat" from their CHP units with GHG savings almost 14	

Lymberopoulos, 2004, Microturbines and their application in bio-energy

potential end users have no experience

and exclude heat

renewable energy incentives focus on electricity

Lymberopodios, 2004, Ivin	croturbines and their application
Strengths	Weaknesses
 Microturbines suitable to utilize fuels of varying calorific value low maintenance requirements, compact size, low 	 low efficiency in basic configuration, that reduces even further under part load high capital cost
noise high grade waste heat	 suitable power conditioning equipment required for stand alone operation
> suitable as a DG technology for stand alone or	installation costs can be high for some cases of retrofits
grid connected operation implication minimal installation time, low installation cost	> auxiliary systems required to operate with
 lowest emissions of commercially available CHP technologies 	biomass derived fuels > existing power grids unsuitable for
> size of plants suitable to disperse nature of biomass	accommodating large number of small power
biomass cogeneration is CO2 neutral	high cost of kWh produced
limited emissions are restricted to sites that are far away from urban centres	external costs of fossil fueled power plants are not
 reduce impacts from waste disposal, providing 	➤ the establishment of biomass fuel supplies is
solutions for waste streams installation producing close to load	novel and risky in some countries chicken and egg problem to invest in biomass
 exploitation of indigenous fuels 	cogeneration until fuel supply chains are in place
 create rural revenue streams and local jobs help to improve land management practices such 	and vice versa biomass can be transported but has relatively low
as forestry thinning and clearing	calorific value to make transport viable.
 dispatchable biomass based plants biomass combustion, production of landfill or 	 biomass gasification and pyrolysis unproven at microturbine scale
sewage gas well proven	many biomass applications have a low heat
	demand or operate seasonally (agro-industries) occasional mismatch between biomass
	cogeneration site and site of heat demand
Opportunities	Threats
 capital costs of microturbine-based CHP systems to drop when series production levels are achieved 	 microturbines could be sidelined by the Hydrogen "hype" and leapfrogged by fuel cells running on
 trigeneration becoming commercially proven local job opportunities 	bio-ethanol or biogas rigeneration even more difficult to achieve
initial microturbine pilot applications utilizing	locally
biofuels running successfully and accumulating valuable experiences	Few pure commercial applications running on biomass, most still pilot
 possible development of a Directive for renewable energy heat 	 competing technologies (ICEs) performing perfectly adequately, specially in CHP mode
 increased taxation of fossil fuels, from which biomass would be exempt 	 Current CHP market static, having negative impact on R&D of biomass based CHP
current EU and national financing schemes for innovative RES applications	In increasingly liberalized energy markets, direct subsidies become less available
diversification of energy companies	Uncertain economic conditions for investors
some biomass fuels are available for free (mostly	Current electricity prices are very low
applies to wastes)	Third party accept to electricity networks complex

<u>SWOT of MGTs in bioenergy – situation in 2016</u>

Focusing on the bioenergy related issues:

Strengths

Applicable still today

Weaknesses

Still applicable – though biomass availability has increased

Opportunity

Changes as biomass logistics have improved and cost has increased

Threats

Mostly still valid – subsidies still exist

Case 1: Ökofen pellet boiler and Microgen stirling engine

Pellematic Smart e

Experince from Kuurne Office of Ökofen

-Installation: October 2014

-Connected on the wall heating system

-8kWth

-650We

-Parallel with a buffertank of 800 liter

-Running hours: 1173h in 103 days

-Running hours Stirling: 1157h (98,6%)

-Total energy production: 710 kWh

-Mean poweroutput: 613Watt

Source: Ökofen presentation in Biomass Counts event 20.10.2015

Case 2: ÖkoFEN_5.0e

Pellematic 50e

New designed ÖkoFEN Pellets boiler including

Qnergy-Stirling-Engine

- Goal of the project:
 - 50-60 kW thermal capacity
 - 5 kW electric capacity
 - Target customer group: large buildings, company commecial building, hotels etc. which have a thermal base load of at least 50 KW therm.
- 2013: beginning of cooperation with Qnergy
- August 2014: Start of first prototype at the test lab in Lembach
- 2015: Type testing and certification
 & Field test installations