

EXHAUST SYSTEMS PROJECT

Gary Lock, Frazer Nash Consultancy

Meetings since the last ETN meeting - October 2011:

- A teleconference was held on 27 January 2012
- A meeting was held at Statoil (Bergen) on 15 March 2012

• Contributors: AAF, Aarding Thermal Acoustics, RWTH Aachen, Boustead International Heaters, Frazer-Nash Consultancy, Kanfa-Tec, Mjørud, Neste Oil, Statoil, TechPart, Total, ETN, Shell, Oxsensis, VBR Turbine Partners, Alstom, Camfil Farr, Dresser-Rand, Tulsa Heaters

Progress to date:

- A first draft of the standard is being generated by ETN, expected issue for review by end of April 2012
- All sections of the standard have been individually reviewed by working group members

Next steps:

- Review of the first draft document by interested ETN members, with comments to ETN by end-August 2012
- Generate ETN member funding and start measurement trials and benchmark CFD programme, by end-May 2012

The main developments are:

- Initial focus has been on gas turbine exhaust systems that include WHRUs
- The group has generated a draft ETN standard for use by members
- The ETN standard will be submitted for development into an International Standard (ISO)
- Once the Exhaust Systems with WHRU standard is complete, the group will focus on HRSGs. The aim will be to submit comments for improving the current standard, API-534
- Measurement trials and benchmark CFD programme has been defined, pending funding. The standard requires this validation to ensure that it provides:
 - "Best practice guidelines for CFD modelling of exhuast flows"
 - Validation of different CFD methods, geometric and boundary condition assumptions
 - A set of validation data for evaluating future CFD methods

Measurement trials and benchmark CFD programme:

- CFD analysis can provide valuable data on flow velocities, pressures and temperatures, for use in:
 - Structural design and integrity assessment of exhaust ducting
 - The design of auxilliary burners
 - The design of process equipment (WHRUs, HRSGs)
- Numerous factors contribute to a achieving a correct CFD simulation:
 - The cost-benefit balance of difference CFD methods
 - The applicability of different CFD methods to exhaust flows
 - The correct implementation and interpretation of results from different CFD methods
 - Geometric and boundary condition assumptions

Flow boundary condition assumptions

Measurement trials and benchmark CFD programme overview:

- Measurement trials on a LM2500+, courtesy of Total (CLOV FPSO project)
 - Static and dynamic flow measurements: Velocity, pressure, temperature

Structural measurements: Surface temperatures, strains, vibration accelerations

2nd

1st

Measurement plane

location

location

Programme overview:

Benchmark CFD programme

- Perform 9 CFD cases, with different turbulence models, geometry and boundary conditions
- Validate results against the measurement trials
- Best Practice CFD Guidelines
 - Generate a best practice CFD guidance document

Phase		Timescales
1	Development of Validation Strategy	Completed by Frazer-Nash Consultancy Ltd
2	Development of Measurement Strategy	Completed by RWTH Aachen University
3	Instrumentation Design and Build	April – July 2012
4	Build Management	April – July 2012
5	Installation and Trials	August 2012 January 2013
6	Supporting Modelling	Ongoing
7	Validation and Development of Best Practice Guidelines	June 2013

- Total investment required is €250k to €350k
- Read the detailed proposal, to be issued by ETN
- Decide whether to help fund and benefit from access to the work
- Commitment to invest is required by May 2012 to meet very tight timescales

Benefits of "Best practice guidelines for CFD modelling of exhaust flows" to Operators, GT OEMs, Exhaust & WHRU suppliers, Consultancies and Academia:

- Understand the confidence in the structural integrity and performance predictions of equipment
- A benchmark CFD case and for evaluating the proficiency of subcontractors in CFD modelling
- An understanding of the cost-benefit of different CFD methods used to design equipment
- Understand what simplifications can be made to the geometric representation of exhaust for CFD modelling
- Will understand how to represent boundary conditions for CFD modelling
- Validation of current and future CFD methods
- Understand what information is required by exhaust suppliers