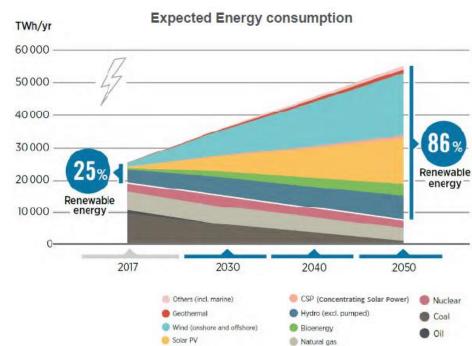
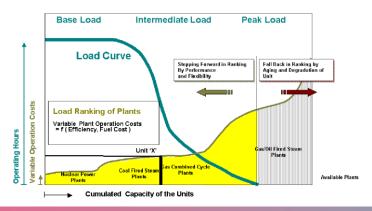

FLEXnCONFU PROJECT



Background

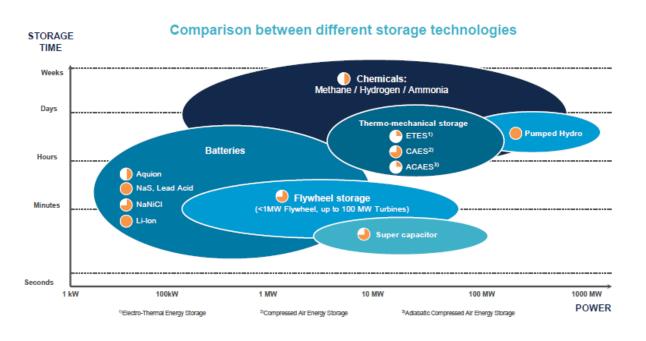
Renewables transforming Energy Scenario

Н


Source: IRENA Global Renewable Outlook, Ed. 2020

Background

Studying the type of regulation (Primary-Secondary-Tertiary) locally needed, the type and size of the plant (e.g. if there is a dedicated energy off-taker like an industrial plants) and the need of local ancillary services market, RINA is able to study the best option/idea to make the plant more flexible and increase its remunerativity.


- STORAGE INTEGRATION (Battery, capacitors, flywheels depending on need and size)
- AGGREGATION(even of a part of power capacity coupled with a local industry)
- POWER-TO-X (Heat and hydrogen, depending on local contexts)

Background - storages

Overview of storage systems

- Concept phase
 - Demonstration
- Early commercialCommercial

Technology

- Chemical
- Thermal
- Electrochemical
- Mechanical
 - Electrical

Source: U.S. Department of Energy Fuel Cell Technologies Office

DRIVERS

Project Response

DRIVER 1

- Major role of Natural Gas in the EU energy system
- •NG fueled power plants are the bridging technology to a 2050 decarbonized energy scenario

DRIVER 2

- Hydrogen is an essential element in the energy transition
- H₂ can achieve a remarkable importance in the future EU economy

DRIVER 3

- Increasing share of H_2 and/or NH_3 combustion in gas turbines (target 100% H_2 by 2030)
- •Use of ammonia in gas turbine as energy carrier to unlock the potential H2 and reduce the NO_{ν}

DRIVER 4

- Rapid growth in variable generation is driving the need for a more flexible combined energy and storage technologies
- P2G technologies are receiving particular focus in Europe as the next future best storage to be coupled with RES

To demonstrate a cleaner and fast-response solutions to be coupled with the existing fossil fuel power plants, with a significant impact already in the short-term

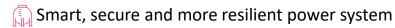
To use of hydrogen in fossil fuel power plant in order to accelerate the transition towards a decarbonized and energy efficient society

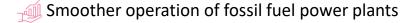
To become a reference point in the short term for $\rm H_2$ and P2G solutions, and in the long term for $\rm NH_3$ as energy carrier.

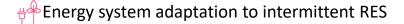
Replication of FLEXnCONFU P2X solutions for future applications in other energy sectors in order to enable higher RES penetration.

Develop and demonstrate in a real operative plant the integration of power-to-X-to-power system able to:

- increase fossil-based power plant flexibility
- reduce emissions of the power plant
- use the intermediate product in which power is stored within the power plant itself to produce power again

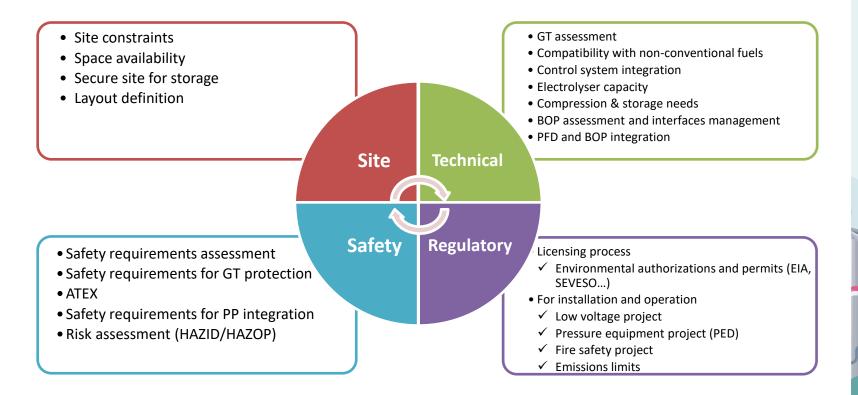

Natural gas Grid **Gas Turbine** Option 2: NH, storage Power-to-Ammonia Ammonia synthesis (H_2) Electrolyser Option 1: Power-to-Hydrogen


ADVANCED CONTROL SYSTEM


GAS TURBINE FUEL FLEXIBILITY

ECONOMIC, SAFETY AND ENVIRONMENTAL SUSTAINABILITY

Expected impacts:



MAIN CHALLANGES

